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Abstract
This document corrects errors and omissions in the "HTTP Dynamic Streaming Specification Version 3.0" document as published in August 2013.

1. Add "Additional Bootstrap Requirements" section
Add the following section after Section 8.4 of the specification:

8.4.1 Additional Bootstrap Requirements

This section describes additional requirements regarding HDS bootstraps. The requirements described in this section supercede
any specified in [F4MSPEC] and apply to all HDS versions.



Array indices in this section are specified as 0-based indices.

8.4.1.1 Manifest Bootstraps

A "manifest bootstrap" is bootstrap information that is referenced by or embedded within a <bootstrapInfo> element of the
manifest.

Each rendition is associated with a manifest bootstrap; The @bootstrapInfoId attribute SHALL be present on all <media>
elements.

8.4.1.2 Fragment Bootstraps

A "fragment bootstrap" is the bootstrap information that is embedded within a fragment.

A fragment MAY contain a bootstrap, but the meaning of such a bootstrap is currently undefined. The client SHALL ignore all
fragment bootstraps.

8.4.1.3 'abst' box

This section provides additional requirements on the 'abst' box of manifest bootstraps.

Profile, Live, MovieIdentifier, ServerEntryCount, QualityEntryCount, DrmData, and MetaData are deprecated and SHALL be 0.
ServerEntryTable and QualityEntryTable are also deprecated and SHALL be empty. The client SHALL ignore these fields since
equivalent information is available within the F4M manifest document.

CurrentMediaTime SHALL equal the presentation time of the most recent message in the last fragment of the bootstrap. See
Section 8.4.7 for a precise definition of the last advertised fragment.

Update SHALL be 0.

The bootstrap shall contain exactly 1 fragment run table and exactly 1 segment run table; SegmentRunTableCount and
FragmentRunTableCount SHALL both be 1.

8.4.1.4 'asrt' box

This section provides additional requirements on the 'asrt' box of manifest bootstraps.

Flags SHALL be 0.

QualityEntryCount is deprecated and SHALL be 0. Therefore, the 'abst' box SHALL contain exactly 1 'asrt' box and
QualitySegmentUrlModifiers SHALL be empty. The quality related fields of the bootstrap are deprecated since the
@bootstrapInfoId attribute of the manifest associates each rendition with a single bootstrap.

8.4.1.5 'afrt' box

This section provides additional requirements on the 'afrt' box of manifest bootstraps.

Flags SHALL be 0.

TimeScale SHALL equal the enclosing 'abst' box's TimeScale.

QualityEntryCount SHOULD be 0. Therefore, the 'abst' box SHALL contain exactly 1 'afrt' box and QualitySegmentUrlModifiers
SHALL be empty. As described in Section 8.4.1.4, the quality related fields of the bootstrap are deprecated.

The first FRAGMENTRUNENTRY cannot be a discontinuity entry; The value of FragmentRunEntryTable[0].FragmentDuration
SHALL NOT be 0.

The last FRAGMENTRUNENTRY can only be a normal entry or an end of presentation discontinuity; If the FragmentDuration of
the last FRAGMENTRUNENTRY of the FragmentRunEntryTable is 0, its DiscontinuityIndicator SHALL be 0.

Unless it is the final end of presentation discontinuity, a Discontinuity FRAGMENTRUNENTRY can only be followed by a normal
entry; If the FragmentDuration of a FRAGMENTRUNENTRY is 0 and it is not the last FRAGMENTRUNENTRY of the
FragmentRunEntryTable , the FragmentDuration of the next FRAGMENTRUNENTRY SHALL be non-zero.

The end of presentation discontinuity can only appear at the end of the segment run table; If the FragmentDuration of a
FRAGMENTRUNENTRY is 0 and its DiscontinuityIndicator is 0, the FRAGMENTRUNENTRY SHALL be the last



FRAGMENTRUNENTRY in the FragmentRunEntryTable.

FRAGMENTRUNENTRY elements shall be in increasing timestamp order; That is:

If a FRAGMENTRUNENTRY e1 has a non-zero FragmentDuration and is followed by a FRAGMENTRUNENTRY e2
with non-zero FragmentDuration, e2.FirstFragmentTimestamp SHALL be greater than e1.FirstFragmentTimestamp.

If a FRAGMENTRUNENTRY e2 has a 0 FragmentDuration and a DiscontinutityIndicator of 2 or 3, the preceding
FRAGMENTRUNENTRY e1 and following FRAGMENTRUNENTRY e3 SHALL have values such that
e1.FirstFragmentTimestamp < e2.FirstFragmentTimestamp and e2.FirstFragmentTimestamp <
e3.FirstFragmentTimestamp.

If a FRAGMENTRUNENTRY e2 has a 0 FragmentDuration and a DiscontinutityIndicator of 0 or 1, the
FirstFragmentTimestamp of the FRAGMENTRUNENTRY SHOULD be ignored.

8.4.1.6 Mapping presentation times to fragment ids

This section describes how the contents of the bootstrap determine which fragments are advertised.

The id of the first fragment advertised by the bootstrap is determined by the following formula:

  FirstFragmentId = afrt.FragmentRunEntryTable[0].FirstFragment

The id of the last fragment advertised by the bootstrap is determined by the following formula:

    LastFragmentId = SRE_LastFragmentId(abst.SegmentRunEntryCount - 1)

See Section 8.4.7 for a definition of SRE_LastFragmentId. The current media time SHALL NOT be used to determine the last
advertised fragment id.

Each non-discontinuity FRAGMENTRUNENTRY maps a contiguous range of presentation times to a contiguous range of
fragment ids. The start of the time range for FRAGMENTRUNENTRY[i] (in TimeScale units) determined by the following formula:

    FRE_StartTime(i) = afrt.FragmentRunEntryTable[i].FirstFragmentTimestamp

The end of the time range for FRAGMENTRUNENTRY[i] (in TimeScale units) equals the return value of FRE_EndTime(i) in
following pseudocode:



    function FRE_EndTime(i)

        if i == afrt.FragmentRunEntryCount - 1

            return LastFragmentEndTime()

        else if FragmentDuration == 0

            return FRE_StartTime(i)

        else if afrt.FragmentRunEntryTable[i+1].FragmentDuration == 0

            let nextDiscontinuityIndicator =

afrt.FragmentRunEntryTable[i+1].DiscontinuityIndicator

            if nextDiscontinuityIndicator == 0

                  return LastFragmentEndTime()

            else if nextDiscontinuityIndicator == 1

                return afrt.FragmentRunEntryTable[i+2].FirstFragmentTimestamp

            else // nextDiscontinuityIndicator == 2 or nextDiscontinuityIndicator == 3

                return afrt.FragmentRunEntryTable[i+1].FirstFragmentTimestamp

            end if

        else

            return afrt.FragmentRunEntryTable[i+1].FirstFragmentTimestamp

        end if

    end function

  

    function LastFragmentEndTime()

        var frtEntry

        if afrt.FragmentRunEntryTable[afrt.FragmentRunEntryCount - 1].FragmentDuration != 0

            set frtEntry = afrt.FragmentRunEntryTable[afrt.FragmentRunEntryCount - 1]

        else

            set frtEntry = afrt.FragmentRunEntryTable[afrt.FragmentRunEntryCount - 2]

        end if

        return frtEntry.FirstFragmentTimestamp + (LastFragmentId - frtEntry.FirstFragment + 1)

* fre.FragmentDuration

    end function

The time range for a given FRAGMENTRUNENTRY includes FRE_StartTime(i) and all times up to, but not including,
FRE_EndTime(i).

Therefore, the fragment id corresponding to a given presentation time (in TimeScale units) equals the return value of the
following pseudocode:

    function fragmentId(t)

       let i = 0

       while i < afrt.FragmentRunEntryCount

           if FRE_StartTime(i) <= t and t < FRE_EndTime(i)

               let frtEntry = afrt.FragmentRunEntryTable[i]

               return frtEntry.FirstFragment + floor((t - FRE_StartTime(i)) /

frtEntry.FragmentDuration)

           end if

           set i = i + 1

       end while

       return undefined // time does not map to any fragment

    end function

8.4.1.7 Mapping fragment ids to segment ids

Each SEGMENTRUNENTRY maps a contiguous range of fragment ids to a contiguous range of segment ids. The first fragment
id mapped by a SEGMENTRUNENTRY at index i of asrt box's SegmentRunEntryTable is equal to the return value of the
following pseudocode:



    function SRE_FirstFragmentId(i)

        let afrt = abst.FragmentRunTableEntries[0]

        let asrt = abst.SegmentRunTablesEntries[0]

        if i == 0

            return afrt.FragmentRunEntryTable[0].FirstFragment

        else

            return (SRE_FirstFragmentId(i-1) +

                    asrt.SegmentRunEntryTable[i-1].FragmentsPerSegment *          

                    (asrt.SegmentRunEntryTable[i] - asrt.SegmentRunEntryTable[i-1]))

        end if

    end function

Notice that the first fragment id mapped by the segment run entry table is the first fragment id that appears in the bootstrap.

The last fragment id mapped by a SEGMENTRUNENTRY at index i of asrt box's SegmentRunEntryTable is equal to the return
value of the following pseudocode:

    function SRE_LastFragmentId(i)

        if i == asrt.SegmentRunEntryCount - 1

            return (SRE_FirstFragmentId(i) +

                    abst.SegmentRunTableEntries[i].FragmentsPerSegment - 1)

        else

            return SRE_FirstFragmentId(i+1) - SRE_FirstFragmentId(i)

    end function

Notice that the last SEGMENTRUNENTRY only provides the segment ids for a single fragment.

The first and last fragment ids advertised by the segment run table SHALL NOT refer to discontinuities. This implies that the
fragment id specified by an end of presentation discontinuity's FRAGMENTRUNENTRY SHALL NOT be in the range of any
SEGMENTRUNENTRY.

Therefore, the segment id for a given fragment id equals the return value of the following pseudocode:

    function segmentId(f)

        var i = 0

        while i < asrt.SegmentRunEntryCount - 1

            if f >= SRE_FirstFragmentId(i) and f <= SRE_LastFragmentId(i)

                let srtEntry = abst.SegmentRunTableEntries[i]

                return SRE_LastFragmentId(srtEntry.FirstSegment + floor((f -

SRE_FirstFragmentId(i)) / srtEntry.FragmentsPerSegment)

            end if

            i = i + 1

        end while

        return undefined // fragment is not advertised

    end function
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